
Figure 1— Experimental setup of the Software 
Defined Radio.  
 
Software on the host notebook computer 
generates the code required to program the DSP 
and FPGA hardware the Lyr Signal Processing 
SignalMaster development board on its edge in the 
background. After the code is downloaded to the 
hardware, the notebook also serves as the radio’s 
user interface. The receiver RF pre-amp, 
transmitter power-amp, anti alias filter, and T/R 
switching are on the copper clad board behind and 
to the left of the microphone.  
 

 

Introduction 
In the January 1948 issue of QST, SSB was heralded as 
being “… the most significant development that has ever 
occurred in amateur radiotelephony... ”.  

We are now on the brink of another step in technology that 
will eventually change how HF and all high performance 
radios will be constructed. This technology will ultimately 
lead to lower cost, improved performance and vastly 
increased flexibility.  

One of the most remarkable components to evolve over the 
past decade is the Field Programmable Gate Array or FPGA. 
The FPGA is uniquely suited for high speed digital signal 
processing (RF data rates) due to its scalable and parallel 
hardware resources. As mind bending as the FPGA is, it is 
made even more remarkable by the latest design tools that 
allows a high fidelity simulation of the system and then 
automatically generates the VHDL code to program the 
device. An engineer’s dream, come true!  

The same situation holds for the Digital Signal Processing 
chips.   Tools exist that do both system simulation and 
automatic code generation. And as if all that was not 
enough, the design environment turns into a graphical user 
interface to control, monitor, and adjust parameters on your 
creation while it is running! Yes, it seems too good to be 
true, but it is real.   

This note describes how these tools and components are 
used to create an HF SSB radio.  

 

Some Definitions 
A Software Defined Radio is a radio that is made 
from general purpose reconfigurable / programmable 
components. It is the programming of these components that 
define its operational characteristics. For instance bandwidth 
and modulation (ssb, cw, am, fsk, psk, qpsk etc) are 
completely determined by how the reconfigurable parts are 
programmed, not by hardware filters, mixers, amplifiers, and 
other “traditional” components.  
 
DSP (chip) is a computing device that is optimized for 
the processing of data streams (signals). The holy grail of 
signal processing is the “multiply-add” operation since 
virtually all algorithms need myriad of these computations. 
In conjunction with a fast hardware multiplier and 
accumulator, the DSP memory addressing is computed in the 
same instruction cycle using memory address generation 
hardware such that two values (coefficient and data) can be 
fetched from fast memory to feed the multiplier. This allows 

the multiply-add operation to be done in one machine cycle. 
Although it is true that a general purpose processor (e.g. 
Intel Pentium) can in fact computationally outpace the DSP, 
the power consumption but its cost is commensurate with 
this performance.  
 
The FPGA is a re-programmable logic device that can 
contain the equivalent of millions of gates. On board these 
remarkable devices reside RAM, 18x18 parallel multipliers, 
registers, look up tables, and the equivalent of general 
purpose logic. The key advantage the FPGA enjoys over the 
DSP is its ability to utilize the hardware in a parallel fashion. 
In other words, one is not constrained to process data 
streams through one (or at most 4) arithmetic elements, but it 
literally may have thousands of  elements to perform the 
computations in parallel. This allows the FPGA to process 
data streams that are running in the 100s of MHz. Until 
recently, the downside of the FPGA was its difficulty to 
write the required code to program it. It required knowledge 
of a Hardware Descriptor Language such as Verilog or 
VHDL. This has now all changed with the introduction and 
evolution of the Xilinx System Generator for DSPTM.  
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Figure 2— Block Diagram.   The radio architecture can be described with only 12 major components. The 
color code is as follows:  

black : continuous time signals 
red :  the fastest sampling rate, 64 MSPS  
green :  I/Q data at 64 MSPS/4096 rate 
blue :   audio data at 64 MSPS/8192  (7.8125 kHz) 

Radio Architecture  
Figure 2 shows the utter simplicity of this radio!  True, 
millions of transistors are required, but thanks to modern 
semiconductor manufacturing techniques, the cost per 
transistor is less than the cost of a 1 turn wire loop serving as 
an inductor! Who would have thought that to ever be 
possible? As can be seen, the radio uses multiple sampling 
rates for the signal processing and the high speed work is 
done in the FPGA while the audio bandwidth work is done 
in the DSP. A rather perfect division of labor, with each 
component doing what makes the most sense.   
 

Weaver’s Third Method 
Prior to 1956 there were two primary methods known for 
generating SSB signals: phasing and filtering. Each of these 
methods had its pro’s and con’s. The phasing method 
required a circuit that generated a 90 degree phase shift 
across the audio frequency range (300-3000 Hz).  Deviations 
from 90 degrees led to a reduction in the unwanted sideband 
suppression. The filter method eventually won out with both 
crystal and mechanical filters being used. In 1956, Donald 
Weaver came up with a third method that apparently had 
been overlooked. It required filters, and phase shifts, but the 
phase shifts were fixed with respect to frequency and the 
filters were low-pass, not band-pass. However, the 

technology of the time was not really up to the task, and the 
filtering approach worked well, so the new “Third Method” 
was not adopted.   
 
Implementing Weaver’s technique in DSP hardware is quite 
easy! The main issues of dc offset, and filter gain-phase 
match that prevented the idea from being adopted in 1956, 
simply do not exist.  
 
Figure 3 shows a block diagram, created with the 
Mathworks Simulink environment, of a simple SSB 
generator using Weaver’s scheme. To provide a 
recognizable shape to the spectrum, a weighted sum of sine 
waves is used as the audio input. The first translation and 
filtering operation centers the desired sideband around DC 
and removes the other sideband. Then it is a simple matter to 
up convert this complex (I & Q) signal to the desired RF 
frequency. The output of the final two mixers is either 
summed or differenced to get the upper or lower sideband. 
The spectra shown in Figure 3 tell the story.  
 
 



Figure 4— Filter Frequency Response 
 

Figure 3— Weaver’s Third Method.  A simple SSB generator made from Simulink blocks is useful to 
understand the spectral shifting, filtering, and up translation to RF.  
 

  

 

Filter Design 
The previous simplified example shifted the upper sideband 
to approximately 25 kHz. The actual radio will need to go 
far higher, almost 30 MHz. To accomplish this, multi-stage, 
multi-rate filtering is required. The Mathworks has a 
superior set of filter design tools that make this design job 
quite easy.  
 
To cover the 30 MHz HF spectrum, a sampling clock of 
greater than 2x30 MHz is needed. The on-board 64 MHz 
clock satisfies this requirement. The desired audio rate is 
around 8000 Hz, and 64e6/8192 = 7812.5 Hz is a good fit 
here.  Focusing on the receiver for a moment, the first filter 
will be a Cascaded Integrator Comb (CIC) filter since it 
maps very well to FPGA hardware. The remaining filters 
will be FIR decimators  or interpolators for the transmit 
chain. The filter p-rocessing is as follows: CIC (D=64), 
FIR_1 (D=8), FIR_2 (D=8), FIR_3 (D=2) for an overall 
sample rate reduction of 64*8*8*2=8192. Figure 4 shows 
the overall frequency response of the multi stage filter. The 
same filter coefficients are used for transmit as well.  The 
last filter (D=2) determines the ultimate frequency response 
characteristics. It therefore borders on being trivial to change 

the filter characteristics since they are all defined by 
software.  
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Figure 5— Local Oscillators   

Figure 4— Hardware Independent Model (Top Level)  

Figure 6— SSB Modulator  

Figure 7— SSB Demodulator  

 
Evolving the Design 
The basics are now laid out, and more detail now needs to be 
added. The first step in this process is to create a hardware 
independent model. This is easily done by using Simulink’s 
DSP Block Library. Figure 4 shows the general signal flow 
in the radio. The local oscillators are shared by both receive 
and transmit processing chains. The receiver consists of a 
digital down converter followed by a final filter-demodulator 
stage. The transmitter is simply the receiver blocks turned 
around with interpolating rather than decimating filters!  

 

Once satisfactory simulation results have been obtained 
indicating the general signal flow and filtering are correct, it 
is time to split the model between the FPGA and the DSP. 
For this design, it is quite straightforward to partition the 
functions. The light green blocks will be implemented in the 
DSP chip while the light red blocks will be implemented in 
the Xilinx FPGA. And yes, this is still the Weaver scheme, 
but using modern terminology (digital down / up 
converters).    
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The FPGA Design 
The Xilinx System Generator for DSP is a state-of-the-art 
tool that provides design entry, data path definition, bit / 
cycle true simulations, test bench generation, hardware co-
simulation, VHDL code generation, and more!  The key to 
the tool is that the Xilinx system Generator Bock Library 
maps to Xilinx LogiCores which are highly optimized 
implementations of typical DSP functions (filters, direct 
digital synthesizer, FFT, etc.).  One merely picks blocks 
from the library, defines the parameters (e.g. word size, 

binary point position), and hooks them together just like 
standard Simulink blocks. Gateways are used to go between 
the standard Simulink double precision and the fixed point 
representation used by the Xilinx blocks.  Referring to figure 
10, there are blocks that are specific to the Lyr SignalMaster 
hardware and these are marked with an “LSP”. The ADC 
(red) represents the 64 MSPS converter, while the DAC 
(red) is the 64 MSPS DAC. The gate_1 gateway is a 32 bit 
register that the DSP can write to change the frequency of 
the Direct Digital Synthesizer in the RF Local Oscillator 
block. The downconverted IQ stream from the 
Rx_Mix_Filters is fed to a 32 bit gateway that interfaces to 

0.5-29 MHz, Fs=64MSPS

SSB Rx/Tx Part I: FPGA Frequency Translator 
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Figure 10— FPGA top Level   
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Figure 8— Rx Digital Down Converter   

Figure 9— Tx Digital Up Converter   



Figure-12 Rx Down-Sampling Filters  
 

Figure-14 Xilinx ISE 5.2i   
 

Figure-11 DDS HF Local Oscillator  
 

Figure-13 Tx  Up-Sampling Filters  
 

Figure-15 Xilinx Floor Planner   
 

the TI DSP. On the transmit side, another gateway (IQ from 
DSP) takes data form the TI DSP and drives the IQ input of 
the TX_Filters_Mix block. This diagram is the top level and 
further detail is contained within each block as shown in 
Figures 11-13 to the right.  
 
Once the data paths and processing is defined, simulation 
reveals if the design meets the objectives of dynamic range, 
and spurious responses introduced by the fixed point 
implementation. If not, chances are that more bits need to be 
used in the filter coefficients and/or data paths. Once the 
objectives are met, a click of the mouse generates the circa 
200 files of VHDL required to implement the design.  
 
It is then a matter of using the normal Xilinx tool flow 
(Figure 14) of synthesis, place and rout, and finally to bit-
stream generation to program the FPPGA. This process 
requires virtually no user intervention and a bit-stream can 
be accomplished with a single mouse click.  
 
 

 
 
 
 

One of the more interesting reports that can be generated is a 
“floor-plan” of the FPGA design. This tool (Figure 15) 
provides a graphical representation of the FPGA resources 
used by each major component (DDS, FIR filter etc).  As 
can be seen, virtually all (95%) of the FPGA fabric is used 
by the digital up/down converter. The design did not initially 
fit in the xc2v1000 part. Bits were trimmed from the 
transmit data paths and rounding / saturation were 
abandoned. The simulation results indicated that this would 
not cause any severe problems if the proper audio signal 
conditioning were done in the DSP chip portion of the 
design. The ability to easily make these tradeoffs is a key 
attribute of the design flow. Much more can be done to 
shrink the design allowing the use of a lower cost FPGA, but 
for this example, there is little point. 
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Figure-17 Audio Processing   

Figure-18 Reverberation Module   

Figure-19 Tx SSB top Level Modulator  

The DSP Design 
Figure 16 shows the top level of the radio partition which is 
implemented with the TI C6711 DSP chip on the Lyr 
SignalMaster development hardware.  Like the preceding 
models, the model is hierarchical.  The Audio Processing 
block is shown in Figure 17. The left most manual switch 
selects either the audio ADC in the Mic. Input block, or, two 
audio sine generators that are summed together to make a 
built in 2-tone generator. Reverberation is not used with the 
two tone test, but if the ADC is selected, the output of the 
Reverberation module is routed to the block output. The 
details of the Reverberation module are shown in Figure 18.  
 
For processor efficiency, most of the signal processing is 
done with “frames” of data. On the block diagram, frame 
based signals show as a wide line. However, feedback 
systems such as the reverb, need to be implemented on a 
sample by sample basis, therefore there is an un-buffer and 
buffer combination to go to sample based and then back to 
frame based processing.  

 

The transmit chain modulator is shown in Figure 19. The 
main subsystem is only enabled during transmit to lower the 
DSP processing load. Figure 20 has the modulator and a 
compressor which rather than being in the audio chain, is 
applied to the IQ data stream from the modulator block 
output.  
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Figure-16 DSP Partition in TI C6711  
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Figure-20 Tx SSB Modulator, Filter and Compressor 

Figure-21 Tx IQ Compressor 

Figure-22 Rx SSB Demodulator  

Figure-22 Rx AGC 

Figure-23 Rx SSB Demodulator 

Figure-24 FPGA DDS Frequency Control  
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Referring to Figure 19, the output of the Compressor feeds a 
switch that only passes the IQ stream on to the subsequent 
blocks during transmit. The final block in figure 19 converts 
the complex single precision IQ data stream into a 32 bit 
fixed point word (16 bits for I and 16 bits for Q) to be passed 
to the FPGA by the Asynchronous Interface block in Figure 
16. 
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The first block in Figure 22 converts the 32 bit fixed point 
combined IQ signal from the FPGA to a complex (IQ) single 
precision float which drives the downsample-by-2 FIR filter. 
This filter determines the information bandwidth of the 
receiver. Its up-sample-by-2 counterpart in the transmitter 
does the same thing.  To switch between various information 
filters, one need only to create them using the DSP filter 
design tools, and place the filters in “enabled subsystems” in 
a manner similar to the mechanism used to select between 
the mic and the two-tone source.  

The FIR filter IQ output drives the AGC subsystem which is 
shown in Figure 23. The AGC is similar to the transmit 
compressor in that it is a feed forward scheme rather than a 
feedback scheme. Feed forward is difficult in analog 
hardware, but easy with DSP. Note that one of the paths (RF 
AGC) also drives a programmable gain amplifier before the 

64 MSPS in the Lyr SignalMasterhardware. Also, some 
numeric displays are shown measuring signal levels.  

The normalized IQ level from the AGC subsystem is then 
fed to the SSB demodulator  block along with the BFO 
signal from the (complex) audio oscillator that was in the Tx 
SSB Modulator block (Figure 19).  
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The output of the demodulator (Figure 23) forms the Audio 
Out signal in Figure 19.  

 

To control tuning frequency, transmit/receive, and sideband 
selection, a simple user interface was made (Figure 16) from 
switches and sliders. The light bulb icon turns on some 
LEDs on the SignalMaster during transmit. A wire run from 
the LED driver is the electrical Transmit / Receive signal for 
the external (analog) hardware. 
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The processing of these control signals is shown in Figure 
24. The 32 bit word to set the FPGA Direct Digital 
Synthesizer frequency is computed in this block. Notice that 
the DDS frequency is offset from the tuned frequency by an 
amount that is equal to the BFO frequency, and, this 
frequency shift is up or down depending on the sideband 
select mode. This places the tuned frequency to the point 
where there would be a carrier in a non-suppressed carrier 
system.  

 

3

RF AGC

2

Smeter

1

Out

Unbuffer

Saturation

0

RFA1

2129

RFA

2129.4

RF gain

Product3

max

MinMax

log10

Math
Function

z
-192

Integer Delay1

z
-1

Integer Delay

1

Gain5

300

Gain4

3

Gain3

.9995

Gain2

20/6

Gain1

64

Downsample

DF FIR

Digital Filter

Dead Zone

(double)

Data Type Conversion

1

Constant2

.5

Constant

Buffer

|u|

Abs

Enable

1

In
single single

single

single

single (c) [64x1]

single

single [64x1]

single [64x1]
double

single single

single

single [64x1]single (c) [64x1]

single

single

single

single singlesingle

single

single (c) [64x1]

[64x1]

[64x1]

[64x1]
single (c) [64x1]

single



Figure-25 Real time Scope on Audio Signal 

Automatic Code Generation and 
Control  
 
Now the good part!  The real-time code to implement the 
previous block diagrams, download it, and run it, is a mouse 
click away! A key feature of the Simulink environment is an 
(optional) fully integrated code generation engine option 
called the Real Time Workshop.  The process that generates 
the C code can be modified to support a variety of target 
hardware.  A pre-packaged target exists for the Lyr 
SignalMaster making it remarkably easy to get up and 
running. Not a single line of code was manually written.  

 

If that were not impressive enough, the block diagram now 
becomes the user interface to control the radio! The switches 
and sliders on the block diagram change parameters (T/R, 
frequency, USB/LSB) on the fly while the code is executing 
in the hardware. Plus, the displays (e.g. numerical in Figure 
22) update as well. You can even drop in “scopes” as in the 
top level of Figure 16, and these update while the code is 
running as well!   Frankly, it has to be seen to be 
appreciated.  

 
Beyond this, parameters ( e.g.constants) can also be changed 
while the code is running to adjust  reverb level, AGC time 
constant, signal limiting etc.  

Ok, How Does it Work ?  
Reports are universally positive with regard to the signal 
quality of the radio. In spite of the fact that the receiver has 
no tuned pre-selector, it overloads only on the strongest local 
signals. For certain, quantitative measurements need to be 
made, but there is no question that the radio works well 
under real world conditions.  

 
Further Work  
This design is a Work In Progress. Now that the basic 
scheme is functioning, additions will be fairly easy. Notice 
from Figure 16 that only 26% of the processor horsepower is 
being used for the current code. This implies that 3x more 
processing is available. On the downside, there has been a 
pesky intermittent failure which has been found to be related 
to temperature. New hardware has just arrived and will 
hopefully cure this ill.  
 
Stay tuned, 
 
Dick, w1qg 
September 21, 2003 
 
 
 
 
 
 
 

Useful Links 
 

http://mathworks.com 

http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=dsp_software_tools 

http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=system_generator 

http://www.signal-lsp.com/ 

http://home.comcast.net/~w1qg/homebrew.pdf 

 


