
Figure 1— Experimental setup of the Software
Defined Radio.

Software on the host notebook computer
generates the code required to program the DSP
and FPGA hardware the Lyr Signal Processing
SignalMaster development board on its edge in the
background. After the code is downloaded to the
hardware, the notebook also serves as the radio’s
user interface. The receiver RF pre-amp,
transmitter power-amp, anti alias filter, and T/R
switching are on the copper clad board behind and
to the left of the microphone.

Introduction
In the January 1948 issue of QST, SSB was heralded as
being “… the most significant development that has ever
occurred in amateur radiotelephony... ”.

We are now on the brink of another step in technology that
will eventually change how HF and all high performance
radios will be constructed. This technology will ultimately
lead to lower cost, improved performance and vastly
increased flexibility.

One of the most remarkable components to evolve over the
past decade is the Field Programmable Gate Array or FPGA.
The FPGA is uniquely suited for high speed digital signal
processing (RF data rates) due to its scalable and parallel
hardware resources. As mind bending as the FPGA is, it is
made even more remarkable by the latest design tools that
allows a high fidelity simulation of the system and then
automatically generates the VHDL code to program the
device. An engineer’s dream, come true!

The same situation holds for the Digital Signal Processing
chips. Tools exist that do both system simulation and
automatic code generation. And as if all that was not
enough, the design environment turns into a graphical user
interface to control, monitor, and adjust parameters on your
creation while it is running! Yes, it seems too good to be
true, but it is real.

This note describes how these tools and components are
used to create an HF SSB radio.

Some Definitions
A Software Defined Radio is a radio that is made
from general purpose reconfigurable / programmable
components. It is the programming of these components that
define its operational characteristics. For instance bandwidth
and modulation (ssb, cw, am, fsk, psk, qpsk etc) are
completely determined by how the reconfigurable parts are
programmed, not by hardware filters, mixers, amplifiers, and
other “traditional” components.

DSP (chip) is a computing device that is optimized for
the processing of data streams (signals). The holy grail of
signal processing is the “multiply-add” operation since
virtually all algorithms need myriad of these computations.
In conjunction with a fast hardware multiplier and
accumulator, the DSP memory addressing is computed in the
same instruction cycle using memory address generation
hardware such that two values (coefficient and data) can be
fetched from fast memory to feed the multiplier. This allows

the multiply-add operation to be done in one machine cycle.
Although it is true that a general purpose processor (e.g.
Intel Pentium) can in fact computationally outpace the DSP,
the power consumption but its cost is commensurate with
this performance.

The FPGA is a re-programmable logic device that can
contain the equivalent of millions of gates. On board these
remarkable devices reside RAM, 18x18 parallel multipliers,
registers, look up tables, and the equivalent of general
purpose logic. The key advantage the FPGA enjoys over the
DSP is its ability to utilize the hardware in a parallel fashion.
In other words, one is not constrained to process data
streams through one (or at most 4) arithmetic elements, but it
literally may have thousands of elements to perform the
computations in parallel. This allows the FPGA to process
data streams that are running in the 100s of MHz. Until
recently, the downside of the FPGA was its difficulty to
write the required code to program it. It required knowledge
of a Hardware Descriptor Language such as Verilog or
VHDL. This has now all changed with the introduction and
evolution of the Xilinx System Generator for DSPTM.

By Dick Benson, W1QG (v0.1)

An HF SSB Software Defined Radio

Figure 2— Block Diagram. The radio architecture can be described with only 12 major components. The
color code is as follows:

black : continuous time signals
red : the fastest sampling rate, 64 MSPS
green : I/Q data at 64 MSPS/4096 rate
blue : audio data at 64 MSPS/8192 (7.8125 kHz)

Radio Architecture
Figure 2 shows the utter simplicity of this radio! True,
millions of transistors are required, but thanks to modern
semiconductor manufacturing techniques, the cost per
transistor is less than the cost of a 1 turn wire loop serving as
an inductor! Who would have thought that to ever be
possible? As can be seen, the radio uses multiple sampling
rates for the signal processing and the high speed work is
done in the FPGA while the audio bandwidth work is done
in the DSP. A rather perfect division of labor, with each
component doing what makes the most sense.

Weaver’s Third Method
Prior to 1956 there were two primary methods known for
generating SSB signals: phasing and filtering. Each of these
methods had its pro’s and con’s. The phasing method
required a circuit that generated a 90 degree phase shift
across the audio frequency range (300-3000 Hz). Deviations
from 90 degrees led to a reduction in the unwanted sideband
suppression. The filter method eventually won out with both
crystal and mechanical filters being used. In 1956, Donald
Weaver came up with a third method that apparently had
been overlooked. It required filters, and phase shifts, but the
phase shifts were fixed with respect to frequency and the
filters were low-pass, not band-pass. However, the

technology of the time was not really up to the task, and the
filtering approach worked well, so the new “Third Method”
was not adopted.

Implementing Weaver’s technique in DSP hardware is quite
easy! The main issues of dc offset, and filter gain-phase
match that prevented the idea from being adopted in 1956,
simply do not exist.

Figure 3 shows a block diagram, created with the
Mathworks Simulink environment, of a simple SSB
generator using Weaver’s scheme. To provide a
recognizable shape to the spectrum, a weighted sum of sine
waves is used as the audio input. The first translation and
filtering operation centers the desired sideband around DC
and removes the other sideband. Then it is a simple matter to
up convert this complex (I & Q) signal to the desired RF
frequency. The output of the final two mixers is either
summed or differenced to get the upper or lower sideband.
The spectra shown in Figure 3 tell the story.

Figure 4— Filter Frequency Response

Figure 3— Weaver’s Third Method. A simple SSB generator made from Simulink blocks is useful to
understand the spectral shifting, filtering, and up translation to RF.

Filter Design
The previous simplified example shifted the upper sideband
to approximately 25 kHz. The actual radio will need to go
far higher, almost 30 MHz. To accomplish this, multi-stage,
multi-rate filtering is required. The Mathworks has a
superior set of filter design tools that make this design job
quite easy.

To cover the 30 MHz HF spectrum, a sampling clock of
greater than 2x30 MHz is needed. The on-board 64 MHz
clock satisfies this requirement. The desired audio rate is
around 8000 Hz, and 64e6/8192 = 7812.5 Hz is a good fit
here. Focusing on the receiver for a moment, the first filter
will be a Cascaded Integrator Comb (CIC) filter since it
maps very well to FPGA hardware. The remaining filters
will be FIR decimators or interpolators for the transmit
chain. The filter p-rocessing is as follows: CIC (D=64),
FIR_1 (D=8), FIR_2 (D=8), FIR_3 (D=2) for an overall
sample rate reduction of 64*8*8*2=8192. Figure 4 shows
the overall frequency response of the multi stage filter. The
same filter coefficients are used for transmit as well. The
last filter (D=2) determines the ultimate frequency response
characteristics. It therefore borders on being trivial to change

the filter characteristics since they are all defined by
software.

-1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
4

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Hertz

O
ve

ra
ll

F
ilt

er
 R

es
po

ns
e

in
 d

B

Figure 5— Local Oscillators

Figure 4— Hardware Independent Model (Top Level)

Figure 6— SSB Modulator

Figure 7— SSB Demodulator

Evolving the Design
The basics are now laid out, and more detail now needs to be
added. The first step in this process is to create a hardware
independent model. This is easily done by using Simulink’s
DSP Block Library. Figure 4 shows the general signal flow
in the radio. The local oscillators are shared by both receive
and transmit processing chains. The receiver consists of a
digital down converter followed by a final filter-demodulator
stage. The transmitter is simply the receiver blocks turned
around with interpolating rather than decimating filters!

Once satisfactory simulation results have been obtained
indicating the general signal flow and filtering are correct, it
is time to split the model between the FPGA and the DSP.
For this design, it is quite straightforward to partition the
functions. The light green blocks will be implemented in the
DSP chip while the light red blocks will be implemented in
the Xilinx FPGA. And yes, this is still the Weaver scheme,
but using modern terminology (digital down / up
converters).

Simulink HF SSB Transceiver

Red = 64MHz
Cyan = 64MHz/4096
Dark Green = 64MHz/8192

Tx_out

B-FFT

Tx RF Spectrum

lo_sin

lo_cos

IQ_in

RF_out

Tx Digital Up
Converter

0

Sideband
 Select

lsb_sel

bfo_sin

bfo_cos

Audio_in

IQ_out

SSB Modulator

IQ_in

bfo_sin

bfo_cos

lsb_sel

Audio_out

SSB Demodulator

Rx_out

Fo

Rx/Tx Frequency

RF_in

lo_sin

lo_cos

IQ_out

Rx Digital Down
Converter

RF input

B-FFT

RF
Input Spectrum

Color Track

Fin

LSB_sel

hf_lo_sin

hf_lo_cos

bfo_sin

bfo_cos
Local Oscillators

-K-

Gain

28.4

Freq (MHz)

B-FFT

AF Spectrum

AF Input

double (2) double

double

double

double

double

double

double (c)

double

double
double

double (c)

double (2) double

double

4
bfo_cos

3
bfo_sin

2
hf_lo_cos

1
hf_lo_sin

-K-

m1

Switch

Vin
sin

cos

LO_dds

Vin
sin

cos

BFO_dds

Fbfo

BFO Freq

2
LSB_sel

1
Fin

double

double

double

double

double

double

double

double

double

double

SSB DEMOD

1
Audio_out

SwitchMix 2

Mix 1

-K-

Gain1

x[2n]

FIR
Decimation2

Re(u)
Im(u)

Complex to
Real-Imag

4
lsb_sel

3
bfo_cos

2
bfo_sin

1
IQ_in

double (c)

double

double

double

double

double

double

double

double

double

double

double (c)

SSB Modulator

1
IQ_out

-K-

m1

Switch1

Re
Im

Real-Imag to
Complex1

Product3

Product
x[n/2]

FIR
Interpolation by 2

4
Audio_in

3
bfo_cos

2
bfo_sin

1
lsb_sel

double

double

double

double (c)double (c)double

double double

double

double

The FPGA Design
The Xilinx System Generator for DSP is a state-of-the-art
tool that provides design entry, data path definition, bit /
cycle true simulations, test bench generation, hardware co-
simulation, VHDL code generation, and more! The key to
the tool is that the Xilinx system Generator Bock Library
maps to Xilinx LogiCores which are highly optimized
implementations of typical DSP functions (filters, direct
digital synthesizer, FFT, etc.). One merely picks blocks
from the library, defines the parameters (e.g. word size,

binary point position), and hooks them together just like
standard Simulink blocks. Gateways are used to go between
the standard Simulink double precision and the fixed point
representation used by the Xilinx blocks. Referring to figure
10, there are blocks that are specific to the Lyr SignalMaster
hardware and these are marked with an “LSP”. The ADC
(red) represents the 64 MSPS converter, while the DAC
(red) is the 64 MSPS DAC. The gate_1 gateway is a 32 bit
register that the DSP can write to change the frequency of
the Direct Digital Synthesizer in the RF Local Oscillator
block. The downconverted IQ stream from the
Rx_Mix_Filters is fed to a 32 bit gateway that interfaces to

0.5-29 MHz, Fs=64MSPS

SSB Rx/Tx Part I: FPGA Frequency Translator

D1 Q1

gate_1

In1RX_IQ

demux IQ

DAC

dac
sim

fpt dbl

center freq

RF_DAC

LO_sin

LO_cos

IQin

TX_Filters_Mix

IQout

LO_sin

LO_cos

RF_adc

RX_Mix_Filters

B-FFT

RX Output

RF input

RF in/out

Freq_in

LO_sin

LO_cos

RF Local Oscillator

B-FFT

Output Spectrum

Color Track
LSP FPGA
Generator

B-FFT

Input Spectrum

IQ_muxd

IQ for Xmit

D1 Q1

IQ To DSP

D1 Q1

IQ From DSP

-K-

Gain1

6.4e+007

Fs_ADC&DAC

28.399999991059

Frequency (MHz)

-C-

Frequency

I : O

Freq

xldsamp 2
z-1

Down Sample

D1 Q1

DAC1

Codec Sync

D1 Q1

ADC

System
Generator

doubledouble

Fix_14_13

Fix_14_13

Fix_14_13

double

double
xmit_rf_out

double

double double

double Fix_32_0

double double (c)

Fix_32_32

UFix_32_0

UFix_12_0

UFix_32_0

double

Figure 10— FPGA top Level

Digital Down Converter

1
IQ_out

Re
Im
iq2c

Product

x[8n]

FIR_2
Decimation by 8

x[8n]

FIR_1
Decimation by 1

CIC Decimator D=64
3

lo_cos

2
lo_sin

1
RF_in

double (c)
double (c)

double

double

double

double (c) double (c) double (c)

Digital Up Converter

1
RF_out

Mixer 2

Mixer 1
x[n/8]

FIR
Interpolation1

x[n/8]

FIR
Interpolation

Re(u)
Im(u)

Complex to
Real-Imag

CIC Interpolator3
IQ_in

2
lo_cos

1
lo_sin

double

double

double (c) double (c) double (c) double (c) double

double

double

double

double

Figure 8— Rx Digital Down Converter

Figure 9— Tx Digital Up Converter

Figure-12 Rx Down-Sampling Filters

Figure-14 Xilinx ISE 5.2i

Figure-11 DDS HF Local Oscillator

Figure-13 Tx Up-Sampling Filters

Figure-15 Xilinx Floor Planner

the TI DSP. On the transmit side, another gateway (IQ from
DSP) takes data form the TI DSP and drives the IQ input of
the TX_Filters_Mix block. This diagram is the top level and
further detail is contained within each block as shown in
Figures 11-13 to the right.

Once the data paths and processing is defined, simulation
reveals if the design meets the objectives of dynamic range,
and spurious responses introduced by the fixed point
implementation. If not, chances are that more bits need to be
used in the filter coefficients and/or data paths. Once the
objectives are met, a click of the mouse generates the circa
200 files of VHDL required to implement the design.

It is then a matter of using the normal Xilinx tool flow
(Figure 14) of synthesis, place and rout, and finally to bit-
stream generation to program the FPPGA. This process
requires virtually no user intervention and a bit-stream can
be accomplished with a single mouse click.

One of the more interesting reports that can be generated is a
“floor-plan” of the FPGA design. This tool (Figure 15)
provides a graphical representation of the FPGA resources
used by each major component (DDS, FIR filter etc). As
can be seen, virtually all (95%) of the FPGA fabric is used
by the digital up/down converter. The design did not initially
fit in the xc2v1000 part. Bits were trimmed from the
transmit data paths and rounding / saturation were
abandoned. The simulation results indicated that this would
not cause any severe problems if the proper audio signal
conditioning were done in the DSP chip portion of the
design. The ability to easily make these tradeoffs is a key
attribute of the design flow. Much more can be done to
shrink the design allowing the use of a lower cost FPGA, but
for this example, there is little point.

2

hf_lo_cos

1

hf_lo_sin

xlusamp 8192

Up Sample2

xlcastforce

Reinterpret

z-1

Delay2

z-1

Delay1

xldds

sin

cos

data

we

DDS

k =1

Constant

1

Freq

Bool

UFix_32_32Fix_32_32

Fix_14_13

Fix_14_13

Fix_14_13

Fix_14_13UFix_32_32

1

IQ_out

I

Q

d8_2

I

Q

d64_CIC
xlmult

z-3

a

b
(ab)

M2

xlmult
z-3

a

b
(ab)

M1

I

Q

Out

IQ mux
to make 32b stream

I : O

IQ data rate

I: O

Freq2

I: O

Freq1

1.563e+004

1.25e+005

1e+006

I

Q

 d8_1

3

RX_ADC

2

LO_cos

1

LO_sin

Fix_16_15 Fix_16_14

Fix_16_14Fix_16_15

double

double

double

Fix_16_15

Fix_16_15

Fix_14_13

Fix_14_13

Fix_14_13

Fix_16_15

Fix_16_15

UFix_32_0

1

RF_out

I

Q

i8_2

I

Q

i64_CIC

xladdsub
z-1

a+b
a

b

TX sum

xlmult
z-3

a

b
(ab)

M2

xlmult
z-3

a

b
(ab)

M1

I n

I

Q

IQ demux
for 12.11 fmt

In1 Out1

Fix2UFix

xlconvert
z-1

cast

Convert2

I

Q

 i8_1

3

Tx_IQ

2

LO_sin

1

LO_cos

Fix_12_11

Fix_12_11

Fix_16_15

Fix_16_15

Fix_12_11

Fix_12_11

Fix_16_15
Fix_12_11

Fix_12_11

Fix_14_13

Fix_14_13

Fix_12_11
Fix_12_11

Fix_12_11

Fix_32_0
UFix_12_0

.

Figure-17 Audio Processing

Figure-18 Reverberation Module

Figure-19 Tx SSB top Level Modulator

The DSP Design
Figure 16 shows the top level of the radio partition which is
implemented with the TI C6711 DSP chip on the Lyr
SignalMaster development hardware. Like the preceding
models, the model is hierarchical. The Audio Processing
block is shown in Figure 17. The left most manual switch
selects either the audio ADC in the Mic. Input block, or, two
audio sine generators that are summed together to make a
built in 2-tone generator. Reverberation is not used with the
two tone test, but if the ADC is selected, the output of the
Reverberation module is routed to the block output. The
details of the Reverberation module are shown in Figure 18.

For processor efficiency, most of the signal processing is
done with “frames” of data. On the block diagram, frame
based signals show as a wide line. However, feedback
systems such as the reverb, need to be implemented on a
sample by sample basis, therefore there is an un-buffer and
buffer combination to go to sample based and then back to
frame based processing.

The transmit chain modulator is shown in Figure 19. The
main subsystem is only enabled during transmit to lower the
DSP processing load. Figure 20 has the modulator and a
compressor which rather than being in the audio chain, is
applied to the IQ data stream from the modulator block
output.

FPGA Freq Control

Interface to - from FPGA
Digital Frequency Translator

 SSB Rx/Tx Part II: TI DSP Filters + Modulator / Demodulator

Tx==1

Audio_in

lsb_sel

Tx

IQ_to_FPGA

BFO_out

cmprs

Tx SSB Modulator

Test / Rx Out

SMC6xx
Asynchonous

Interface

SMC6xx
Asynchronous
Bus Interface

IQ_from_FPGA
BFO_in
lsb_sel
Tx
cmprs

Audio_out

Smeter

Rx SSB Demodulator

Profiler

Color Track
Level

LSB==1

LED

7.274
Freq

Fine F

lsb/usb

Freq1

Freq2

Out1

FPGA Register

0

DSP
Constant1

1

DSP
Constant

Coarse F

CS4228_cntl

CS4228
Playback

CMD File
Generator

Audio Out

Audio Processing

Time

Audio Out

2.7

AF Out

30

AF Gain

26.38

% CPU Loading

single [64x1]

[64x1]

int32 [64x1] int32 [64x1]single [64x1]

[64x1]

[64x1]

[64x1]single [64x1]

double

single (c) [64x1] [64x1]

[64x1]

[64x1]

single [64x1]

double

double

double

double

double

double

double

single [64x1]

double

double

Figure-16 DSP Partition in TI C6711

3

cmprs

2

BFO_out

1

IQ_to_FPGA

IQin Out1

mpx IQ to a 32bit wordSwitch4

Switch2

Repeat
2x

Repeat

Audio

BFO

lsb

Out1

Out2

Modulator + Compressor

2

Downsample

0+j*eps

DSP
Constant2

0+j*eps

DSP
Constant1

DSP

BFO1

3

Tx

2

lsb_sel

1

Audio_in

double

double

single [64x1]

single (c)

single (c) [64x1]
[64x1]

[64x1]

[64x1]
single (c) [64x1]

single (c) [64x1]

single (c) [64x1]

single (c)

double

int32 [64x1]

double

double

1

Audio Out

In1 Out1

reverb2else { }
Out1

Two Tone

Switch

0

Select Two Tone

1

Select Mic.

if { }
out

Mic Input

Merge

Merge

u1
if(u1 ~=0)

else

IfAudio / Test1

[64x1]

[64x1]
single [64x1]

action

action

single [64x1]

single [64x1]

[64x1]

double
double

boolean

single [64x1]
single [64x1]

1

Out1

Unbuffer

z
-100

Integer Delay

.6

Feedback Gain

Buffer

0.2

AF Out

1

In1

single [64x1]single [64x1]single single [64x1]single

single

single

[64x1]

[64x1]
single [64x1]

Figure-20 Tx SSB Modulator, Filter and Compressor

Figure-21 Tx IQ Compressor

Figure-22 Rx SSB Demodulator

Figure-22 Rx AGC

Figure-23 Rx SSB Demodulator

Figure-24 FPGA DDS Frequency Control

2

Out2

1

Out1

Switch1

Re

Im

Real-Imag to
Complex1

Product1

Product

-1

Gain2

x[n/2]

FIR
Interpolation by 2

IQin

Audio out

Compress

Compressor

Re(u)

Im(u)

Complex to
Real-Imag2

Enable

3

lsb

2

BFO

1

Audio

double

single (c) [64x1]

single (c) [64x1]

single [64x1]

[64x1]

single [64x1]

[64x1]

single [64x1]

single [64x1]

[64x1]single [64x1]

single (c) [64x1]

double

single [64x1]

[64x1]

[64x1]

[64x1]

[64x1]

single [64x1]

single (c) [64x1]

2

Compress

1

Audio out

Unbuffer

Product3

max

MinMax

z
-192

Integer Delay1

z
-1

Integer Delay

25

Gain3

.999

Gain2

1

Gain1

64

Downsample1

IIR DF2T

Digital Filter1

(double)

Data Type Conversion

1

Constant

Buffer1

|u|

Abs

1

IQin

single (c) [64x1]

single [64x1]
[64x1]

[64x1]
single (c) [64x1]

single [64x1]

[64x1]

single (c) [64x1]

single

single (c) [64x1]single [64x1] single

single

singlesingle

single doublesingle

Referring to Figure 19, the output of the Compressor feeds a
switch that only passes the IQ stream on to the subsequent
blocks during transmit. The final block in figure 19 converts
the complex single precision IQ data stream into a 32 bit
fixed point word (16 bits for I and 16 bits for Q) to be passed
to the FPGA by the Asynchronous Interface block in Figure
16.

2

Smeter

1

Audio_out

Switch

IQin

lsb_sel

BFOin

IpQAudio

SSB demod

NOT

Logical
Operator

x[2n]

FIR
Decimation

In

Out

Smeter

RF AGC

AGC

AGC

ADC Gain and more

In1Out1

32bit IQ demux

5

cmprs

4

T x

3

lsb_sel

2

BFO_in

1

IQ_from_FPGA

int32 [64x1] single (c) [64x1]single (c) [64x1]

single [64x1]

single (c) [64x1]

[64x1]

single

double

single (c) [64x1]

double

double

double

double
double

The first block in Figure 22 converts the 32 bit fixed point
combined IQ signal from the FPGA to a complex (IQ) single
precision float which drives the downsample-by-2 FIR filter.
This filter determines the information bandwidth of the
receiver. Its up-sample-by-2 counterpart in the transmitter
does the same thing. To switch between various information
filters, one need only to create them using the DSP filter
design tools, and place the filters in “enabled subsystems” in
a manner similar to the mechanism used to select between
the mic and the two-tone source.

The FIR filter IQ output drives the AGC subsystem which is
shown in Figure 23. The AGC is similar to the transmit
compressor in that it is a feed forward scheme rather than a
feedback scheme. Feed forward is difficult in analog
hardware, but easy with DSP. Note that one of the paths (RF
AGC) also drives a programmable gain amplifier before the

64 MSPS in the Lyr SignalMasterhardware. Also, some
numeric displays are shown measuring signal levels.

The normalized IQ level from the AGC subsystem is then
fed to the SSB demodulator block along with the BFO
signal from the (complex) audio oscillator that was in the Tx
SSB Modulator block (Figure 19).

1

IpQAudio

-1

m1

SwitchProduct1

Product

Re(u)

Im(u)

Complex to
Real-Imag1

Re(u)
Im(u)

Complex to
Real-Imag

3

BFOin

2

lsb_sel

1

IQin

single [64x1]

single [64x1]

single [64x1]

[64x1]
single [64x1]

[64x1]

[64x1]

[64x1]

single [64x1]

single [64x1]

single [64x1]

[64x1]

double

single [64x1]

single (c) [64x1] single [64x1]

single (c) [64x1]

The output of the demodulator (Figure 23) forms the Audio
Out signal in Figure 19.

To control tuning frequency, transmit/receive, and sideband
selection, a simple user interface was made (Figure 16) from
switches and sliders. The light bulb icon turns on some
LEDs on the SignalMaster during transmit. A wire run from
the LED driver is the electrical Transmit / Receive signal for
the external (analog) hardware.

1

Out1

-1

m1

Zero-Order
Hold

Switch1

1e6 -K-

-K-

SMC6xx
Custom
Register

FPGA DDS Freq

64

Downsample

Fbfo

DSP
Constant1

3

Freq2

2

Freq1

1

lsb/usb

doubledouble

double

double

double

double

double

double

double double

double

double double

The processing of these control signals is shown in Figure
24. The 32 bit word to set the FPGA Direct Digital
Synthesizer frequency is computed in this block. Notice that
the DDS frequency is offset from the tuned frequency by an
amount that is equal to the BFO frequency, and, this
frequency shift is up or down depending on the sideband
select mode. This places the tuned frequency to the point
where there would be a carrier in a non-suppressed carrier
system.

3

RF AGC

2

Smeter

1

Out

Unbuffer

Saturation

0

RFA1

2129

RFA

2129.4

RF gain

Product3

max

MinMax

log10

Math
Function

z
-192

Integer Delay1

z
-1

Integer Delay

1

Gain5

300

Gain4

3

Gain3

.9995

Gain2

20/6

Gain1

64

Downsample

DF FIR

Digital Filter

Dead Zone

(double)

Data Type Conversion

1

Constant2

.5

Constant

Buffer

|u|

Abs

Enable

1

In
single single

single

single

single (c) [64x1]

single

single [64x1]

single [64x1]
double

single single

single

single [64x1]single (c) [64x1]

single

single

single

single singlesingle

single

single (c) [64x1]

[64x1]

[64x1]

[64x1]
single (c) [64x1]

single

Figure-25 Real time Scope on Audio Signal

Automatic Code Generation and
Control

Now the good part! The real-time code to implement the
previous block diagrams, download it, and run it, is a mouse
click away! A key feature of the Simulink environment is an
(optional) fully integrated code generation engine option
called the Real Time Workshop. The process that generates
the C code can be modified to support a variety of target
hardware. A pre-packaged target exists for the Lyr
SignalMaster making it remarkably easy to get up and
running. Not a single line of code was manually written.

If that were not impressive enough, the block diagram now
becomes the user interface to control the radio! The switches
and sliders on the block diagram change parameters (T/R,
frequency, USB/LSB) on the fly while the code is executing
in the hardware. Plus, the displays (e.g. numerical in Figure
22) update as well. You can even drop in “scopes” as in the
top level of Figure 16, and these update while the code is
running as well! Frankly, it has to be seen to be
appreciated.

Beyond this, parameters (e.g.constants) can also be changed
while the code is running to adjust reverb level, AGC time
constant, signal limiting etc.

Ok, How Does it Work ?
Reports are universally positive with regard to the signal
quality of the radio. In spite of the fact that the receiver has
no tuned pre-selector, it overloads only on the strongest local
signals. For certain, quantitative measurements need to be
made, but there is no question that the radio works well
under real world conditions.

Further Work
This design is a Work In Progress. Now that the basic
scheme is functioning, additions will be fairly easy. Notice
from Figure 16 that only 26% of the processor horsepower is
being used for the current code. This implies that 3x more
processing is available. On the downside, there has been a
pesky intermittent failure which has been found to be related
to temperature. New hardware has just arrived and will
hopefully cure this ill.

Stay tuned,

Dick, w1qg
September 21, 2003

Useful Links

http://mathworks.com

http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=dsp_software_tools

http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=system_generator

http://www.signal-lsp.com/

http://home.comcast.net/~w1qg/homebrew.pdf

